Business Objects (BOs)
BOs are java classes that implement most of the business logic for the Stars2 system. They interface with DAOs to retrieve raw data from the database and provide additional functionality to operate on this data as needed by the system.
BOs as EJBs
BOs are deployed as Enterprise Java Beans in order to take advantage of functionality present in the Weblogic application container.
The STARS2 architecture … employs a J2EE-compliant container that provides a standards-based application server platform that facilitates the development of enterprise applications. Such containers support Enterprise Java Beans (EJBs) and manage their life cycle as well as supporting J2EE-compliant web applications. EJB components are used to implement mid-tier business logic for enterprise applications such as STARS2. EJB containers handle transactions, security, database connection pooling and concurrency on behalf of the application, thus simplifying the application developers’ job. The EJBs are business facades, while business logic resides in STARS2 Business Objects (BOs).
From the developer’s perspective, BOs can mostly be thought of as Java classes that implement business functionality. However, since BOs are deployed as EJBs, there are some details developers need to be aware of, especially with respect to database transaction management.
First, every BO defined in the us.oh.state.epa.stars2.bo package will have a corresponding EJB class in the us.oh.state.epa.stars2.ejb.services package. These classes are all the same except for their names and are used by the xdoclet tool at compilation time to generate the Service, Remote and RemoteHome interfaces necessary to deploy the BO as an EJB. Discussion of EJBs is out of the scope of this document. They are mentioned here just to make developers aware of their existence and the fact that an EJB class is needed for each BO class.
In stars2 code, the BO class is not used directly in other parts of the system. Instead the Service interface associated with the class is used to invoke BO methods. In order for a BO method to be included in the Service interface, the method must be declared public and must have the @ejb.interface-method annotation specified with the view-type attribute set to “remote” as will be seein in code examples throughout this document.
Transaction Management
As mentioned above, transaction management is handled by the weblogic application container. However, BO methods do not rely solely on container management of transactions. Stars2 BOs employ their own database transaction methods that allow the system to be run in environment without container managed database transactions (e.g. Tomcat). This functionality is not functional within the weblogic environment, but is available should there ever be a change in how transactions are managed.
To understand this better, we will look at an example from the ApplicationBO class.

 /**
 * Create a new application.
 * @param newApp
 * @return
 * @throws DAOException
 * @ejb.interface-method view-type="remote"
 * @ejb.transaction type="Required"
 */
 public Application createApplication(Application newApp)
 throws DAOException {
 Transaction trans = null;
 Application result = null;

 try {
 trans = TransactionFactory.createTransaction();
 result = createApplication(newApp, trans);
 trans.complete();
 } catch (DAOException de) {
 cancelTransaction(trans, de);
 } finally {
 closeTransaction(trans);
 }

 return result;
 }

 /**
 * Create a new application.
 * @param newApp
 * @param trans
 * @return
 * @throws DAOException
 * @ejb.interface-method view-type="remote"
 * @ejb.transaction type="Required"
 */
 public Application createApplication(Application newApp, Transaction trans)
 throws DAOException {
 Application result = null;

 // set PER due date to value from Facility (if specified there)
 if (newApp.getClass().equals(PTIOApplication.class)) {
 if (newApp.getFacility().getPERDueDateCd() != null
 && !newApp.getFacility().getPERDueDateCd().equals(PTIOPERDueDateDef.NOT_APPLICABLE)) {
 ((PTIOApplication) newApp).setRequestedPERDueDateCD(
 newApp.getFacility().getPERDueDateCd());
 }
 }
 result = createNewApplication(newApp, trans);
 updateApplicationComponents(newApp, trans);
 initApplicationEUs(newApp, trans);
 if (newApp instanceof TVApplication) {
 ((TVApplication)newApp).setCapPteTotals(calculateTvCapPteTotals((TVApplication)newApp, trans));
 ((TVApplication)newApp).setHapPteTotals(calculateTvHapPteTotals((TVApplication)newApp, trans));
 }

 return result;
 }
There are two versions of the createApplication method: one which takes an Application object as its sole argument and one which takes and Application object and a Transaction object as arguments. The first method creates a transaction and uses it to invoke the second method, returning the result after completing and closing the transaction. The second method does the real work of creating a new Application by invoking methods that are needed to create the application object in the database (we won’t go into the details here).
In a container that does not manage transactions (like Tomcat), the Transaction class manages the database transaction for the database operations needed to create a new application. Several tables need to be updated during this operation, so a transaction is needed to ensure all updates are committed or rolled back if an error occurs.
When the container does manage database transactions, all code related to the Transaction class is basically a no-op – it has no effect. However, BO developers still need to be aware of transactions and make sure they are handled properly by the container. This is accomplished via the @ejb.transaction annotation found in the comments above the method.
The possible values that may be specified for the @ejb.transaction annotation are described below (from http://www.searchfull.net/blog/2006/10/31/1162267304629.html):
Required
`Required' is probably the best choice (at least initially) for an EJB method that will need to be transactional. In this case, if the method's caller is already part of a transaction, then the EJB method does not create a new transaction, but continues in the same transaction as its caller. If the caller is not in a transaction, then a new transaction is created for the EJB method. If something happens in the EJB that means that a rollback is required, then the extent of the rollback will include everything done in the EJB method, whatever the condition of the caller. If the caller was in a transaction, then everything done by the caller will be rolled back as well. Thus the `required' attribute ensures that any work done by the EJB will be rolled back if necessary, and if the caller requires a rollback that too will be rolled back.
RequiresNew
`RequiresNew' will be appropriate if you want to ensure that the EJB method is rolled back if necessary, but you don't want the rollback to propogate back to the caller. This attribute results in the creation of a new transaction for the method, regardless of the transactional state of the caller. If the caller was operating in a transaction, then its transaction is suspended until the EJB method completes. Because a new transaction is always created, there may be a slight performance penalty if this attribute is over-used.
Mandatory
With the `mandatory' attribute, the EJB method will not even start unless its caller is in a transaction. It will throw a TransactionRequiredException instead. If the method does start, then it will become part of the transaction of the caller. So if the EJB method signals a failure, the caller will be rolled back as well as the EJB.
Supports
With this attribute, the EJB method does not care about the transactional context of its caller. If the caller is part of a transaction, then the EJB method will be part of the same transaction. If the EJB method fails, the transaction will roll back. If the caller is not part of a transaction, then the EJB method will still operate, but a failure will not cause anything to roll back. `Supports' is probably the attribute that leads to the fastest method call (as there is no transactional overhead), but it can lead to unpredicatable results. If you want a method to be isolated from transactions, that is, to have no effect on the transaction of its caller, then use `NotSupported' instead.
NotSupported
With the `NotSupported' attribute, the EJB method will never take part in a transaction. If the caller is part of a transaction, then the caller's transaction is suspended. If the EJB method fails, there will be no effect on the caller's transaction, and no rollback will occur. Use this method if you want to ensure that the EJB method will not cause a rollback in its caller. This is appropriate if, for example, the method does something non-essential, such as logging a message. It would not be helpful if the failure of this operation caused a transaction rollback.
Never
The `NotSupported' attribute will ensure that the EJB method is never called by a transactional caller. Any attempt to do so will result in a RemoteException being thrown. This attribute is probably less useful than `NotSupported', in that NotSupported will assure that the caller's transaction is never affected by the EJB method (just as `Never' does), but will allow a call from a transactional caller if necessary.
Choice of transaction attributes
The J2EE developer's guide recommends that the `Required' attribute be used on any method that will take part in a transaction, unless you have a good reason to do something else.
In Stars2, methods are annotated with the “Required” attribute when they are involved in a database operation that modifies data in some way, the “Supports” attribute when no change to the data is made but the method may be used as part of a larger transaction and the “NotSupported” attribute when the method will never be invoked as part of a transaction as in the example below from InfrastructureBO.
 /**
 * Returns contact for a given contact ID.
 *
 * @return Contact
 *
 * @throws DAOException
 * Data retrieval failed.
 *
 * @ejb.interface-method view-type="remote"
 * @ejb.transaction type="NotSupported"
 */
 public Contact retrieveContact(Integer contactId) throws DAOException {
 return infrastructureDAO().retrieveContact(contactId);
 }
BaseBO
All BO classes are subclasses of BaseBO. The BaseBO class contains methods that are useful for all BOs. A few of these methods are described below.
xxxDAO()
The xxxDAO() method (where xxx identifies a DAO class defined in Stars2, e.g. infrastructureDAO()) is a method that facilitates accessing a DAO class. There are three versions of this method:
· xxxDAO()
· xxxDAO(String schema)
· xxxDAO(Transaction trans)
All three versions of this method invoke the getDAO() method with the appropriate parameters to ensure the specified DAO object is returned and that it connects to the correct database schema. If a DAO needs to be used to invoke a database method as part of a transaction, the third version (which takes a Transaction argument) should be used. The second version of the method (which takes a String argument) is mostly used when the calling method may be invoked from the external system and needs to specify which schema (stars2_staging for access to the external database and stars2 for access to the read-only database) should be used. The first version of the method is usually used to access the DAO for a read-only operation. From the external system, invoking the first version of the method will return a DAO which accesses the read-only database.
isInternalApp()
The isInternalApp() will return true when invoked from a system deployed internally and false when the system is deployed to Air Services. This is useful for methods that need to behave differently on the internal system than on the external system.
getParameter()/getParameterValue()
There are three methods defined to retrieve a parameter value from the parameter definitions file (configuration/app/params.xml). The parameter definitions file contains tunable values used by the system (e.g. PaginationLimit which specifies the maximum number of rows in a table before it is split into multiple pages). Parameter values may be retrieved as Strings or Integers depending on the version of the method invoked.
1

